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By Joan C. Evvard

SUMMARY

The point-source-distribution method of calculating the
asrodynamic coefficierts of thin wings at supsrsonic spe2ds was
extendsd to include the effect of the region betweon the wing
boundary and the foremcst Mach vave from the wing leading edge.
The effect of this region on the surface velocity potential has
been determined by an squivaient function, which is evaluated
over a portion of the wing surface. In this manner, the effect
of angies of attack and yaw as well as the asymmetry of toup and ’
bottom wing surfaces may be calculated. As examples of the method
the pressure dlstribution on a thin plate wing of rectangular plan
Torm as well as the 1ift and the drag coefficlents as a function
of Mach number, angle of attack, and aspect ratio are calculabed.
The equations for the surface velocity potential of several other
plan forms are also includsd.

INTROTUCTION

The theorsetical and experimental Investigations of aircraft
performance at supersonic speeds have been greatly stimulated by
modsern developments in high-speed flight. The theorstical asro-
dynamic performance of thin wings revertheless has not been com-
nletely solved, even through the approximatlons of the linearized
Prandtl—Glauert equation.

Puckett (reference 1), by mesns of a point source distribu-
tion, has formulated a method to dsrive the pressure distribution, .
the wave 1lift, and the wave drag for thin wings at angle of
attack, provided that the leading edge or the wing tip, as the
cage may be, is swept ahead of the Mach line. The method gener~’
ally falls when the sweepback is greater than the Mach line
because the flow over one surface of the wing can influence the
vlow on the other surfaue,
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Jones (reference 2) has been able to calculate the pressure
distributions on a series of supersonic wings by means of line
gources. The results are the same as would be obtained by
Puckett's theory, however, end the method is subject to the same
limitations.

After transforming the Prandtl-Glauert eguation to curvi-
linear coordinates, Stewart (reference 3) plcked the special
solutions corresponding to conioal flows. In this ‘manner, the
Laplace equation that permits the use of conformal napping. -As
a special case, Stewart obtained the 1ift distribution on a thin
delte wing at small angles of atbtack. Brown (reference 4) has
indepeundently solved the same problem by use of a doublet line
gource dlstribution on the wing surface.

The Dresent paper exhends the point-source-distribution
method (applied by Puckett to the wing surface) to include the
effect of the region betwsen the wing boundery and the foremost
Mach wave from the leading sdge. By use of a source distribution
external to the wing, the interaction of the two wing surfaces
may be ilsolated. In this memner the pressure distribution in the
vicinity of the wing tip, as well as the effect of profile shape,
angles of attack and yaw, and aspsct ratio, may be calculated for
a series of finite wings. This work was performed during February
1947 at the NACA Cleveland leboratory.

ANALYSTS OF METHOD

Thin wings will be so used in the analysis that the perturba-
tlon veloclty components may ve assumed to be small compared to
the free-~stream velocity. The linesrized partial differential
equation for the wveloclty potential of a compressible fluid mey
then be applied. The problem le to find a perturbation veloclity
potential that will: (a) satisfy the linearized partisl differ-
entlal eguation of the flow, (b) venish in the region ahead of
the foremost Mach wave, (c) glve streamlines that are tangent to
the airfoil surfaces, and (d) take into account the interaction
between the top and bottom wing surfaces as represented by the
perturbed fisld betwsen the wing boundary and the foremost Mach
wave,
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The Prandtl-Glau =1 linecarized equation for the veloclty
notential of a nonvis o:3 irrctational cgmpreseible fiuld may be
written as

< 2 :
s By B Py o)
ox 3 oz '

wheare
M frie-strsem Mach nurpber (undisturbed flow parallel

to x-axia)

L 4

@ nerturkation velocity pobtentilal
X or @
¥ or n (artesisn cowrdinaves
z o § | '

C :
- For convenilence the 8;ymbols ar;: defined in appendix A. A basic
solution for thé potential of a unit point source disturbence at

(i, n, ) is

Q= TR — = ' 2 - (@)
Wiz -8)2 -p2 (3 - q)¢ -8 (z - L)

where

. More gruaeral solut.ons niy be ohtalned by integration to give

cpz-{’ ;" _ _ g'dt dndf '(3)
N O Y A S I e L N L

wrere q' is th.e source atrength por unit volume. For the thin
wing, the sources and tae wing may lle in the x, y plane and thus

4'df may be reyilaced by g, the BQUIrce ‘etrength per unit area.
Equation (3) thre.r becomes
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Puckett (reference 1) has shown that the boundary conditlons for
thin wings may be satisfied as z -~ 0 by setting ¢ = W/ﬂ, whers
w 1s the perturbation welocity component normal to the x, y plans,
The quentity w is proportional- to the locml slops (the angle sub-
tended by the wing surface from the x, y plane in 1 = consbant
plenes) of the wing in the free-stieam direcfion at the point (§,ﬂ)
If A represents this slope,

(4)

@ = -

T .
where U 1is the free-stream velocity. IEquation (4) then becomes

~

21c

I/ x-0)2 - 8% (3 - )2

The form and the derivation of equation (6) imdicates that
alteration of the local slope Ay ab point (f;, n7) will not

change the perturbation veloclty component w abt some other

point (£, n). The velocity potential at any point (x, y¥y) on

the surface of the wing may then be calculsted by integrating
equation (6) over the region in the X, ¥ DPlane bounded by the
forward Mach cones., (Bes, for example, fig. 1(b).) Puckett
restricted his integration to the wing surface, where A 1is
assumed known. The solutions obtained in this manner are valid

1f the wing ism swept less than the Mach angle or if the top and
bottom surfaces of the wing for any sweepback angle are symmetrical
about the x, y plane.

If a proper distribution of source strength AU/n 1is choseén
for the regions bhetween the foromost Mach wave and the leading
edge, equation (6) will glve the velocity potential at any point
(x, ¥, 0) regardless of sweepback angle and asymmetry of top and
bottom wing surfaces.

The strength of the source distribution between the Mach
cone and the lesading edge (or wing tip) must correspond to the
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local perturbation velocity component w of the region. This
velocity 1s in turn influenced .y the slope of both the top and
the bottom surfaces of the wing.

A thin impermeable disphiragm is assumed to coincide with
& stream sheet in the x, y plane betwéen the wing surface and
the foremnst Mach wave, The presence of the diaphragm will not
alter the flow over the wing surface! The diaphragm may then
be regarded as an extension of the wing to eliminate the
external fleld betwsen tie wing boundary and the foremost Mach
wave,

Becavse the diaphragm coincidea with a stream sheet, it may
sustalin no pressure diffserence at any point between its top and
bovtom surfaces. Furthermove, there can be no discontinuity in
the veloclty components across the diaphragm. This situation
requires that the surtfuce velocity potential at any point on the
top and bottom surfaces of the diaphragm are equal. Inasmuch
a8 the extended wing allows no interaction between its two sur-
faces, the velocity potential at any point (x, y) may be
calculated from either the top or the bottom surface of the
original wing and diaphiagm,

The local slopes of the wing on its top and bottom sur-
faces at the point (¢, n) may be represented by Cp and Op,

and A may represent the corresponding slope on the top sur-
face of the diaphragm. (For" convenlence, the sign of o is
oppositely defined on the two surfaces, For example, o and

Op are both positive on a wedge profile at an angle of atback

of 0Q,) The areas of the wing and the diaphragm surfaces
included in the forward Mech cone from a point on either the
wing or the diaphragm are represented as 8y and Sp, respsc-

tively. HNumber subscripts 1, 2, * ° * represent soctions of
each of these areas. Then by equation (6), the veloclty
potential at (xD,yD) (fig. 1{a)) is



opg= -2 (] Og’t n =4 N, 1) o an_
DT .U 2 " 2 2 '
8 +/(xp - D) - p2lap - n)E sp ¥ (= = £)? - pi(3y - )

=Py g =-0 opdf an U -AE, n) 8¢ dy
-1 b b1 4
: J Sw »/(;D - £)° - BZ(YD - n)? _USD /(ID - 8% - Bz(yD - n)?

where "PD o and 9Pp ,B are 'tha potent? als on the dlsphragm calculated from the top and the
bottom surfa.ces of the wing end the diaphragn, respsctively Or

o

r o ME, n) df an _re _ (op -C‘T) dE an . @
Jop ¥/ (ap - 07 - B2y - )2 | swz/;D o 0P

This integral eguetion defines the function A, The velocity potential at any point (x, ¥)
on the top surface of the wing is given from squation (8) as

-.$T=_QJ~ R UTdﬁdn QJ CON(E, n) af an '(8)
' it 14
L‘w Jix - £)% - By - m)2 Sp Jx - 07 - g2z - )2

Similarly, the potential on the bottom surface is

oy = g“‘ _ opdf @y +gﬂ, A2, n) af an | (68}
dJe iz - 02 - g2 - 02 sp /lx - DF - B3y - m)?

2BET "ON ML VOVH




where the integration is made over the region in the x, y plane bounded by the forward Mach
cone from the point (x, y) over all wing and diaphragm surfeces. .

In special cases, the potentlal ® of equation (8) ma{'be obtained without explicitly
solving for A. This simplification is most easily accomplished iu an obligus u, ¥
coordinate system the axes of which lie parallel to the Mach wavea. In this system, for
example, the value of the coordinete w 1a the dlstance from the v-axis to the point
measured perallsel to the u-axis. The tranaformation equations are

= M - Bn) M
u EE'(E An, = 28 (ﬁ +.B7)
B =L (v -
ﬁ.:M(v+u) | 1 M(v u) (5)
Inasmich as the elemenf.al area in the u, v coordinete éysteun 1g gMég du dv, eguation (7) may

ba written either aas

2_2 ' Afn, v) du dv (op -0Om) du dv
M Sn ,\/[xD - Bv + u)] - 2[rp - 3(v - u)]z \/E‘ -—(v+u)]2 ’ﬁzﬁn'é(f*ujz

(7a)

or as

ON NL VOVR
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1 AMu, V) dudv 1 (0 - Op) du dv ()
M M
8p ﬁuD—u) (vp - v) Swz'/(uD'u) (VD"V) |
where up 8nd vy represent the coordinates of the point (xD, yD) in the w, v system.

1

The regiona of integratlion and the coordinate syatems of equation (7) are sketched for a
wing plan viev in figuwre 1(a). The zero of the coordinate system is: placed at the point of
tangency of the foremost Mach weve and the leading edge. The wing area S, is bounded by the

two curves (or two branches of the same curve) v = v, (u) end v = Vo {v) and the
Iine u = up= 'é% (ID' ~ Byp). Application of eguation 7(b) to this case yields

uD _,@_E-__"__ ('VD ME;_‘T_)__L_‘V } up __du _ VZ(u) (O'B - OT) EY_____ (10)
-J(UD - u) -\/(VD -v) W{un - u) g "/G'D -v)
: ?z(u) D vl(u) S

InAemuch as the limits of integration of the —%_— integrals ave the same for all values'

Afp - ) :
of up and owing to the nature of the functions , the two integrations with respect to v mey
be equated dlong lines of constant Vp ‘that extend across the wing and the diaphragm,

’

'V'D 72(11)
Mu, v) dv . {0y - ap) v - (11)
2
va(w) ¥E¥D - V) vy () /p - )

"ON NI VOVH
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The contribution to the veloclty potential on the topisurface of
the wing attributed to the diaphragm (fig. 1(b)) is given by
equations (8) and (9) as -

Pp p= - o ™ —qu___ v ME:__ZLE‘,K (12)
2 MJ'( 0 f(u_w - u) 72('{1) A/(Vw bl v)
where u, and v

w &re the coordinates of péint (x, y) on the
wing end the limit u' is obtained by solving the equation

- Vg =72 (11')

The integration limits with respect to v and the integrand of
equation (12) are the same as the left side of eguation (11),

except that Vo replaces Vs but the value of Vo along the

v=constant line passing through the point (uy, v,) is v.

The second member of equation (11) may therefore be substituted
into equation (12) to. give .

20 o5 o) av

pppe -l J‘“' -
’ M 0 »\/(uw - u) vl(u) 2 (Vw - v)

N %fj’ (% -0r) :E dn : (13)
Sw,2 2./(x - 8% - 8% - )

The contribution of the diaphragm to the potential on the
wing surface may thus be replaced by an equivalent integration
over & portion of the wing surface. The potentlial on the wing
surface 1is then

-
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~ N

(op -0qp) af an

Jouz 2/x - 02 pRy - 0)°

ajq

Pp =Pp p+ Pp yw= -

cpoo o - Op Ak dy

/

2 _ 2 2
Sy,z V(x - £ -p%(F - n)

ajg

Al
p)

™ Om a¢ dn

HERS x - )% - 85y -

)2

r GT dﬁ an-

A
p}

Sy Wix - 0% - pB(y - )

.U "o g +0m) a¢ .dn (14)
" e, 2/(x - B2 - 82y - 0P
\-lw W’Z y n
oY
® ZBU ~ O'T du 4dv
?= -5 —
rcMz ) ’
W/l - B e w]? <6 [ - oo - w)°
. 280 P (%g +Or) du dv (14a)

A o o gL e T

The derivatiaon of squation (13) includes the assumptions of the
linesrized thoory and the assumption that the leading edge 18 not
blunt (corresponding to the use of a thin dlaphragm). Aside from
these restrictions, the eguation includes the eff'ect of esyrmetry
betwecn the top and the bottom wing surfaces, It may therefore he
anplled to determine wave lift, drag, and prossure distribution in

il
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the vicinlty of wing tips of falrly general chordwise slope disg-
tributions. Because the only restriction on the functlons vy (u)

and vy (u) was thal Sy be influenced only by the wing sec-

tion Sy, the aerodynamic propertles of failrly g_eneré.l plan forms

may be evaluated, (In cases of so-called subsonic trailing edges,
the solution for the veloclty potential that is obtained wvio-
lates the Kutta-Joukowski condition in the vicinity of the trall-
ing edge. The solutions may not correspond to actual flowe under
these conditions.) The effect of yawing the wing may also be
determined simply by simultaneously adjusting the functions vy (u),

vz (u), op, and Op by an emount corresponding to the angle of

yaw. The effectiveness of wing tips and hence the effect of aspect
ratio may likewise be determined.

EXAMPLES OF METHOD

Thin flat plate wing with rectangular plan form and no sweep
back. - For the flat plate wing (fig. 2), O = - Op = angle of

attack o and equation (14) becocmes

_Oe [T at dn
Pp = (15)
J\J Sw’l/(x - )% - 8% (3 - )8

Thus, the external field Sp cancels the effect of the region 3‘,,2

as Par as the potential at point (x, y) 1s concerned.

The pressure coefficient Cn in the region of the wing tip
may be compubted from the equation

CP=-I?J' % : (16)

The value of C. obtained from equations (15) and (16) is derived
in apnendix B for the®top surface of the wing to give

- - %, 20 g3t /2
Cp,m = BJ-'FB'Bm (—%14- 1) (17)
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(Equation (17) is equation (Bl) in appendix B.) The coordinate y
is, of course, neégative. The pressure is therefcre constant along
radlal lines from the origl n, has the free-stréam value along the
tip, end has the Ackeret vaiue (refevence 5) along the Mach line
lying on the wing from the tip and leading edge intersection. If
the Influence of the external field Sy has been neglocted, the

preasure coefficient would be one-half the Ackeret value along the
wing tip instead of the correct value of 0. The result presented
in equation (17) was first derived by Busemann {reference 6) and
has been cited in reference 7.

The pressures on the top and botbom surfaces of the region
influenced by the wing tip are integrated in appendix B to give
the 1ift end drag coefficlents. The 1ift and drag coefficients
are one-half the values obtained by the Ackeret theory (refer-
ence 5), The wave lift and drag coefficients for the whole wing
are glven in terms of the aspoct ratio A (if A ) as

CL:B Kl ZﬁA
S (18)
2 - N\
40 1.
CD:T(l—m/

which 1s derived as eguation (B4) in appendix B. Thils effect of
agpect ratio on the thin flat plate wing has heen previously
reported in reference 8.

Discontinuously swept wing of emall finlte thickness except
on edges. - The leading edge may lle on lines Vv = - klu, and
vV = kzu, wheére kl and ks are positive constants. (See fig. 3.)
For this case, equation (l4a) becomes - B

Pp = 1;& J.zﬁk (xepy) 4, [ 2 (o +07) dv -
o ‘ -kyn 2/[ -E (v u)]z - ?‘[y (v—u]
2| ptxpn) o [Grtxeny) o o1

(19)
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Similarly, the potential on the bottom of the wing is

L P kpu -
M
¢ Jqu EA/E‘ -8 (V+u)]2 -Bz[y - & (v-u):lz
M O
i 2_11% 3 (X-B¥) o ' 35 (THBY) :B dv
Tt ' - _B ] el _ 1 o2

(19a)

Equations (18) end (19a) apply for wings at angles of attack
even though the top and bottom surfeces are asymmetrical. For
symmetrical profiles at an angle of atteck of O, +they reduce to
the expressions obtained by Puckett!s theory.

An Interesting observatlon is that only the second of the two
integrals in equations (19) and (19a) includes the effect of angle
of attack; at an angle of attack «, oOp =0p’' + o, Op = Op' - «,
and Op + Op = og' + Op', where Op' and Op' are the .local

wing slopes on the bottom and top surfaces at an angle of attack
of O. The first integrals of equations (19) and (19a) are iden-
tical. Therefore, only the second integral contributes to

aC
5:2‘ Both Integrals must be considered when pressure distribution

or drag coefficients are desired.

As sn example of the use of equation (19), the velocity
potential for a wedge wing (fig. 4) of comstant wedge angle 20
perallel toc the free-stream direction has been calculated in
appendix C as equation (C2). This potential for the top surface
of the wing is - _
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_ U El + k) x4+ (1 - klllﬁy . 3 ¥y {x —jzil
P =T /5 | A Tz + By)

[(kp - 1) = - (k5 + 1) By]l Sl - 1) x - (kp + 1) By

J¥z Sk (x -~ By) +4/x + By

. Umf (ky + kp) (x + 8y) [t -~ 1) x - (k2 + 1) 8]

B W/ . -
kp

(L+ k) x+ (1.- k) By I [(kz ~1) x - (kg + 1) B}j
JE (k + kp) (x + By)

(20)

The veloclty potentlal for the bottom surface may be obtained by
revlacing o by -a. Only the second brace of equation (20} influ-
ences the 1lift of the wing. Pressure coefficients may be obtained
by substituting equation (20} into eguation {16).

Wing influenced by two independent perturbsd flow flelds
external to wing surface. - An sxtornal flow fisld is considered
to be indepoendent if it does not include an. external flow field of
unknown strength in its forward Mach cone. (See fig. 5.) If

U
wlx - £2 - % (5 - n)?

the velocity potential et point (x, y) will be

Pp = - ”’ ogkat dn - Jj A Kdt dan
Sy Sp,1

2

K (x, y, £ n) =

- \‘ 7\2Kd§ dn (21)
Sp

2
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By application of equation (13)

' on - K
A;KdE dn = SJ?___ZLT_)__ at an
Sp,1 | Sw,1

K cx - GT) K
¥ j —2 (22)
N SW,B
and.
£ (op -op) K
; B - OT
AKAE dn = —— at dn
| |Sp,2 Sw,3
o (og -op) K
% T
N B at an (23)
J Sw,z
Also
UTKdE an = opKat dn + opKag an
s, Se,1 J 8,2
+ OpKag dn + opkKdt dn  (24)
S'w,:’: Sw,4 |

Substitution of equations (22), (23), and (24) into (21) yields
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(O’B + OT) K ) .
Pp = - ——g—— 4t ay - ogkdf dn
~ Sw’l SW,Z
(og +0p) K
- > dfan - oqKd§ dn  (21a)
Sv,3 ' Sw,4

Similar extensions may be made for other independently perturbed
flow regions in the forwaerd Mach cone. (The boundary of the
shaded region in figure 5 gives the limit of validity of equa-~
tion (21a). The shaded region is influenced by external fields
thet are no longer independent.)

Because equations (7) and (8) are linear with respect to the
local wing slope o, equations (14), (19), and (21) may be
divided into bwo sets of integrals; the first set wlill depend on
the angle of attack o, bubt will be independent of the wing
glope o' at an angle of attack of O; the other set will be
independent of angle of attack but wlll depend on the slope o',
For symmetrical profiles about the x, y plene (at an angle of
attack of 0), the second set consists of the velocity potential
for the given plan form at an angle of attack of O. The first
set represents the velocity potential of the thin flat plate wing.
For symmetrical profiles at angle of attack, the aerodynamic
coefficients for the wing may therefore be obtained by super-
posing the solution at an angle of attack of O (calculated by
the methods of Puckett (reference 1) or Jones (reference 2)) and
the solution at angle of attack of & thin flat plate wing of the
same plan form. From the form of eguations (7) and (8), this
superposition is apparently gemeral. In this msnner, for example,
solutions for the symmetrical delte wing and the related alrfoils
of somewhat arbitrery chordwise thickness distribution may be
obtained from the results of Stewart (reference 3) or Brown
(reference 4).

DISCUSSION CF METHOD
The general equations (7) and (8) will satisfy the boundary

conditions of thin wings at supersonic speeds. The less general
gsolution of equation (13) may be applied to calculate the
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contribution to the velocity potentlal on the wing of a single
rerturbed field between the wing boundary and the foremost per-
turbed Mach cone; as illustrated by equation (2la), +the method
may be extended to include the effects of a multipliclty of
Independently perturted external flow fields. The basic
equation (8) from which the succeeding equations were derived
includes the effects of asymmetry about the x, ¥y plane betwsen
the top and bottom surfaces, such as would occur at angles of
attack. The method may also be used to calculate the effects

of yawing the wing.

Flight Propulsion Research Lsboratory,
Netional Advisory Committse for Asronautics, -
Cleveland, Ohio, May 27, 1947, ~
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APPENDIX A

SYMBOLS

The followlng symbols are used in thies report:

n

il
l=
-~
1
™
2
T

€, 1, ¢

. agpect ratio

drag coefficient
Lift coefficlent

pressure coesifficient

.constants gfe&ter thaﬁ zéro

fres-gtream Mach number

disturbance source strengbth per unit area
disturbance source strength per unlt volume
plan form area

free-gtream velocity

oblique coordinates whose axes lle parallel to
Mach lines :

z component of perturbation veloclty
Cartesian coordinates
wing chord

angle of attack

cotangent of free-stream Mach angle, N/Mz -1

Cartesian coordinates
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Gl

P
Subscripts:
B

T

19
slope of stream sheet near £, 7 plene
meagured in 1 = constant planes

slope of the wing surface with respect to the
£, n plene measured in 17 = constant planes

slope of wing surface at zero angle of attack

perturbation veloclty ﬁotential

bottom (wiﬁg or diasphragm surface)
top (wing or diaphragm surface)
diaphragm (with exception of Cp)
wing |

refer either to numbered areas or curves

slope on top wing surface

potential on top surfacs of wing dus to
diaphragn Co

wing area 3
curve v = v; (u)
sldpe of dlaphragm in plan area l

pressure coefflcient on top surface of wing
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APPENDIX B

LIFT DISTRIBUTION NEAR TTP OF THIN WING

OF RECTANGULAR PLAN FORM
(15) are evident from

The limits of integration of equation
the following sketch.

x or ¢

The potential at point (x, y) 4s then
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R S |
Oq = U at A dn
bid
Jo y-’%fu «/(x - E,_)Z - 8%y - 0)?
b4 y+§é—'&-
. { at dn
T
I = A
ZHRy _
= -I-IJ;% [sin_ (?{%+1> -’25] at -Uay

Partial differentiation with resnect to x yields

™ X8y
Mr e, Ve Tx |- 3 gy 717 ) g
ox T2 T2 w8 A
Jo
Ta 18] B 3 1/2B
Ua [+ -
o 2 " (5%“) it

= _Eﬁsin-lc_z_ﬁl+ 1>
B X

2B

Therefore from equation (16)
c =_§§=-E‘+@éin-l<za—y+]> (B1)
P T ox g nB - x
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The average 1ift coefficient for the wing tip may be computed
for the flat plate wing as oy .
-\?1? X

N
3f- 2 Cp as
CL = .
[

Because C, 1s constent along radial lines from the origin, a
triengular infinitesimal area 1s convenlent. In terms of

the chord X this srea is




2
_ "B TP % X . -1y -_c
ZdeS= xccpdy.. [ 3 +n’|3 ai ( +1>]d7 [32
0 0
Thersef ora B
o .
0, = % (B2)
end _
Eu.z
Cp = =&~ ' - (33)

On the average, the wing tip area 1s one-half as effective as the rest of the wing, although
the lift-drag ratio in the frictionless case 1s the seme, In terms of the aspect ratio A,
the wave lift and drag coefficilents of the whole wing are '

et (o)

. 2 (B4)
Aq, 1
Cp = T( - m)
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APPENDIX C

CAICULATION OF VELOCITY POTENTIAL OF A DISCONTINUOUSLY
SWEPT WEDGE WING

For the wing of wedge engle 2¢ shown in figure 4, equa-
tion (19) becomes

(c - a) dv
'g'éMl(}é'(x+BY) ~kyu / [x-.l%(v+u)] 2 -Bz [y—b%(v-u):]z

M M
:KM%PT B é"ﬁ'(x'ﬁﬂ . §§(X+B.’>’)
2up

M kou
——(X+37) 2
+ 2pkg du odv
0 ~kin /Ec-%(v+u):l2 -Bz[y-b—]i(v-u)] @
M
5 (X-BF) M
2B 267 5 X+BY)
_ M X + By - ™
= o) du
B 2gu
M - x -8y -y
ZpX; (x+8Y) “kyu
M
“_291:2(“‘35’) kyu
- fo] du
0 —k}_u
M ]
55{X-B¥) 2Bk, u
w | B Ty + li
= (o-a) = du
B 28u

(c1)
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oM M au
(x-py) 28k u
_ oM A\ XY+ —g— N
B : 2 v
x-By - 4
0
28k
Zﬂk saE=(X+B7) Ty - o 2u
e a
B by - a
0
el 58 28k 1
Zg(x By) Xy + P l
- le_d' du
B 4\ ZBu -
x-y - "
¥ _(x+8y)

Each of these integrals may be integrated (refersunce 9,
integrals 111 and 113), although care should be taken in the

choice of signs for the sgquare roots. The following scheme
was applied:



Vel = 1vb vl
V(D) = -vE el
Vbl = Wl

where b and b' are arbitrary numbers. In other words, when two negative signg are multi-
plisd under the radical, the negative sign ig transferred as a factor to the front of the
radical. The 1ntegr-ations yield

M

sg(x-By) 2k, U

* X1y + — = [(i) x+ Qi) py], 1 fla(=9)
i = g VR g —— T

0 x-By - -Z—P-E Iy ,

;Em_/m . M[(kg—l)x - (kp+l) By log:f(k,a-l)x - (k1) By
P 2pv’ &, i x-B7) +v/Eipy

92
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""‘(:; By) 2pk.u
gp+rY 1
/E+By+ T d.u=M (1 z) (x485) | (k-1) - ( 1)
iy - 2pu 2p (x )2 J I kZ X k2+ Ry l

2BET *ON NI VIVH

L [si)x v (k) py] \/kl[(kz—l) x - (p+1) fy]
28 &/k—l (k1+k2) (x+By)_

Hence

op e 30) [ s oes), o [, [t < tepntes], /0%~ (g
) Wi _ (x+p7) ﬁé‘ S (x-By) /5By

+ U f (kl"'kz) (x+By) [(kg~1)x « (ko+l) By]

ﬂB kgz

. [(1+k1):_x: + (1-ky) By | tm'_l \/kl[(kz—l)x - (kp+l) By
JEL ' " (kpekp) (%By)

Le
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Figure 2,~ Integration regions for calculating velocity
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Figure 3.- Reglons of integration for calculating veloclty
potential on surface of finite thickness, discontinuously
swept wing at supersonic speeds.
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Figure 5.- Reglons of integration for calculating velocity
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